Blindness Caused by Deficiency in AE3 Chloride/Bicarbonate Exchanger

نویسندگان

  • Bernardo V. Alvarez
  • Gregory S. Gilmour
  • Silvina C. Mema
  • Brent T. Martin
  • Gary E. Shull
  • Joseph R. Casey
  • Yves Sauvé
چکیده

BACKGROUND Vision is initiated by phototransduction in the outer retina by photoreceptors, whose high metabolic rate generates large CO2 loads. Inner retina cells then process the visual signal and CO2. The anion exchanger 3 gene (AE3/Slc4a3) encodes full-length AE3 (AE3fl) and cardiac AE3 (AE3c) isoforms, catalyzing plasma membrane Cl-/HCO3- exchange in Müller (AE3fl) and horizontal (AE3c) cells. AE3 thus maintains acid-balance by removing photoreceptor-generated CO2 waste. METHODOLOGY/PRINCIPAL FINDINGS We report that Slc4a3-/- null mice have inner retina defects (electroretinogram b-wave reduction, optic nerve and retinal vessel anomalies). These pathologic features are common to most human vitreoretinal degenerations. Immunobloting analysis revealed that Na+/HCO3- co-transporter (NBC1), and carbonic anhydrase II and CAXIV, protein expression were elevated in Slc4a3-/- mouse retinas, suggesting compensation for loss of AE3. TUNEL staining showed increased numbers of apoptotic nuclei from 4-6 months of age, in Slc4a3-/- mice, indicating late onset photoreceptor death. CONCLUSIONS/SIGNIFICANCE Identification of Slc4a3 as underlying a previously unrecognized cause of blindness suggests this gene as a new candidate for a subset of hereditary vitreoretinal retinal degeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Sodium Bicarbonate and Sodium Chloride on Renal and Hematologic Factors in Patients with Glucose-6-phosphate Dehydrogenase Deficiency

Background: Sodium bicarbonate serum therapy is used for compensation bicarbonate lost and increasing blood pH in metabolic acidosis caused by severe anemia in patient with glucose-6-phosphate dehydrogenase (G6PD) deficiency. The aim of present study was comparison the effect of serum therapy using two different serums (serum with bicarbonate and without bicarbonate) on some renal and hematolo...

متن کامل

The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl-/HCO3- exchanger binds carbonic anhydrase IV.

Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbona...

متن کامل

Regulation of B-type intercalated cell apical anion exchange activity by CO2/HCO3-.

The cortical collecting duct (CCD) B cell possesses an apical anion exchanger dissimilar to AE1, AE2, and AE3. The purpose of these studies was to characterize this transporter more fully by examining its regulation by CO2 and HCO3. We measured intracellular pH (pHi) in single intercalated cells of in vitro microperfused CCD using the fluorescent, pH-sensitive dye, 2',7'-bis(2-carboxyethyl)-5(6...

متن کامل

Interactions of transmembrane carbonic anhydrase, CAIX, with bicarbonate transporters.

Association of some plasma membrane bicarbonate transporters with carbonic anhydrase enzymes forms a bicarbonate transport metabolon to facilitate metabolic CO(2)-HCO(3)(-) conversions and coupled HCO(3)(-) transport. The transmembrane carbonic anhydrase, CAIX, with its extracellular catalytic site, is highly expressed in parietal and other cells of gastric mucosa, suggesting a role in acid sec...

متن کامل

The Extracellular Component of a Transport Metabolon

Cytosolic carbonic anhydrase II (CAII) and the cytoplasmic C-terminal tails of chloride/bicarbonate anion exchange (AE) proteins associate to form a bicarbonate transport metabolon, which maximizes the bicarbonate transport rate. To determine whether cell surface-anchored carbonic anhydrase IV (CAIV) interacts with AE proteins to accelerate the bicarbonate transport rate, AE1-mediated bicarbona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS ONE

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2007